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Input error sensitivity of hardness and elastic

modulus evaluated from indentation

load-displacement records by Oliver

and Pharr method
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Due to its straightforwardness and the ease of implementation the Oliver-Pharr method [1]
has been used in the analysis of load-displacement records for more than a decade now.
This paper provides analytical expressions relating the errors in the hardness and elastic
modulus obtained by this method to systematic calibration errors of measured depth, force
and frame compliance for spherical and sharp indentation. While in systems with zero
frame compliance the sensitivity ratios for depth and force measurement were found to be
constant, in systems with a finite frame compliance the error sensitivity changes with the
absolute values of applied force and measured depth. The analytical predictions are
compared with the true variation in derived materials parameters and the ranges of validity
of the expressions are established. The error sensitivity with respect to different input
variables and its implications for the actual measurement are discussed.
C© 2004 Kluwer Academic Publishers

1. Introduction
The need to determine mechanical properties from
small material volumes has driven the rapid develop-
ment of depth-sensing indentation techniques—both
with respect to testing equipment and analysis meth-
ods. Depth-sensing indentation is currently evolving
from a research tool to a technique used in an ever
expanding variety of scientific and industrial applica-
tions. For a specific depth sensing indentation system,
its design concept represents a trade-off between the
system price, robustness and its accuracy. Calibration
errors may cause systematic errors in the measurement
of the basic variables as illustrated by Fig. 1. Through
the evaluation method applied, errors in measured in-
put variables translate into errors in determined material
characteristics.

Even though recent evaluation methods gener-
ate more complete sets of elastic-plastic parameters
[2–7], the method proposed by Oliver and Pharr is still
widely used and referred to [1, 8]. The method is based
on the fundamental principles of contact mechanics
[9, 10] rather than numerical calculations, and can be
applied in principle to any indenter geometry. To the
authror’s knowledge, the most complete work treat-
ing various sources of error in sharp depth-sensing in-
dentation evaluated by Oliver and Pharr method was
that of Mencik et al. [11]. Mencik considered the ef-
fects of errors in the machine compliance and in mea-
sured variables separately, but explicit formulas relating

the errors in machine compliance, calibration errors of
depth/force to resulting errors in measured characteris-
tics were not given.

The present study provides explicit estimates of out-
put errors as a function of errors in measured input
variables and verifies the derived sensitivity coefficients
with specific examples for various indenter geometries
and material parameters.

2. Sensitivity to measurement error
The Oliver and Pharr method derives elastic modulus
and hardness from three main parameters of a load-
displacement record: maximum depth, hmax, maximum
force, Fmax and unloading slope, (dF/dh)max. Using the
notation F ′ ≡ (dF/dh)max, governing relationships of
the Oliver and Pharr method can be written as

H = Fmax

Amax
contact

, (1)

E∗ =
√

π

2

F ′√
Amax

contact

, (2)

hmax
contact = hmax − 0.75

Fmax

F ′ , (3)

where Acontact stands for the projected contact area,H
is the hardness (average pressure) and hcontact is the es-
timate of the vertical distance between the tip of the
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Figure 1 Load-displacement record for Aluminum alloy 6061 obtained with a Berkovich indenter. The plot shows the original data and data with
+5% error in measured force and displacement, respectively.

indenter and the horizontal plane determined by the
contact perimeter. E∗ is the so called reduced elastic
modulus that is determined from the elastic modulus
and Poisson’s ratio of the indenter and the sample ma-
terial [1,10]:

E∗ =
[

1 − ν2
indenter

Eindenter
+ 1 − ν2

sample

Esample

]−1

. (4)

The relationship between the contact depth, hcontact, and
the contact area, Acontact, is required to complete the
set of the Equations 1–3. For a spherical probe under
conditions of the small indentation depth (hcontact � R)
this relationship is

Acontact
∼= 2π Rhcontact. (5)

For an ideally sharp Vickers or Berkovich indenter, the
tip area function is

Acontact = 24.5h2
contact. (6)

3. Error sensitivity of Young’s
modulus measurement

For spherical indentation, the elastic modulus can be
expressed in the basic parameters hmax, Fmax and F ′
from Equations 2, 3 and 5 as

E∗
spherical = 1

2
√

2R

F ′√
hmax − 0.75 Fmax

F ′

. (7)

For Berkovich and Vickers indentation an equivalent
relationship can be written as

E∗
sharp = 1

2

√
π

24.5

F ′(
hmax − 0.75 Fmax

F ′
) . (8)

In the following analysis, systematic measurement er-
rors are treated. It is assumed that at each point of the
load-displacement curve F-h, the relative errors of both

measured variables F and h are constant as schemati-
cally depicted in Fig. 1. Relative errors are denoted as
(�F

F ) and (�h
h ) for force and penetration depth, respec-

tively. Such systematic errors are typically the result of
the offset in the force and depth calibrations.

Assuming the errors of contact load and penetration
depth are independent, the error of the reduced elastic
modulus �E∗

E∗ can be expressed as a function of the
relative errors of both variables [12]:

�E∗

E∗ = 1

E∗

[
∂ E∗

∂h

(
�h

h

)
h + ∂ E∗

∂ F

(
�F

F

)
F

]
max

.

(9)

The reduced elastic modulus E∗ is an implicit function
of h and F :

E∗ = E∗(h, F) = E∗[hmax(h), F ′(h, F), Fmax(F)].

(10)

Therefore, combining Equations 9 and 10 the relative
error of the elastic modulus can be written as

�E∗

E∗

=
[(

∂ E∗

∂hmax

∂hmax

∂h
+ ∂ E∗

∂ F ′
∂ F ′

∂h

)
max

hmax

E∗

]

×
(

�h

h

)
+

[(
∂ E∗

∂ F ′
∂ F ′

∂ F
+ ∂ E∗

∂ Fmax

∂ Fmax

∂ F

)
max

× Fmax

E∗

](
�F

F

)
. (11)

Equation 11 represents the overall relative error of the
reduced elastic modulus as the function of relative er-
rors in the measured penetration depth and contact
force. The derivatives with respect to the parameters
h and F (i.e., ∂

∂h , ∂
∂ F ) represent the change of the dif-

ferentiated variable resulting from the uniform change
of measured depth h or measured force F over their
entire ranges (0, hmax) and (0, Fmax), respectively. The

1186



subscript ‘max’ denotes that all the derivatives are eval-
uated at the point of the maximum penetration depth and
force (hmax, Fmax). For simplicity, the subscript ‘max’
is dropped and it is understood that all the following
derivatives are evaluated at the point (hmax, Fmax).

Due to the assumed direct proportionality between
parameters hmax and h as well as Fmax and F, the
derivatives ∂hmax

∂h and ∂ Fmax

∂ F equal to one. Under the as-
sumption of constant relative error over the entire depth
and load ranges, the relative change in the unload-
ing slope F ′ is proportional to the relative change in
the force: ∂ F ′

∂ F
Fmax

F ′ = 1. At the same time, the change
in the unloading slope is inversely proportional to
the relative change of the contact force, which leads
to ∂ F ′

∂h
hmax

F ′ = −1. Equation (11) can be therefore further
simplified:

�E∗

E∗ =
[(

∂ E∗

∂hmax
− ∂ E∗

∂ F ′
F ′

hmax

)
hmax

E∗

] (
�h

h

)

+
[(

∂ E∗

∂ F ′
F ′

Fmax
+ ∂ E∗

∂ Fmax

)
Fmax

E∗

] (
�F

F

)
.

(12)

Equation 12 contains partial derivatives that need to be
calculated based on Equations 7 and 8 for spherical and
sharp indenters, respectively.

For spherical indentation, the derivative of the ex-
pression (7) with respect to F ′ yields

∂ E∗
spherical

∂ F ′ = 1

2
√

2Rhcontact

(
1 − 0.375Fmax

F ′hcontact

)
,

(13)

which can be rewritten as

∂ E∗
spherical

∂ F ′
F ′

E∗ = 1 − 0.375Fmax

F ′hcontact

= 1 − 0.375π
R

acontact

Hspherical

E∗ . (14)

The right hand side of Equation 14 has limits of 0.5
for a fully elastic case and 1 for materials with a low
hardness to elastic modulus ratio.

Using a similar approach, the derivative can be taken
with respect to hmax, which leads to

∂ E∗
spherical

∂hmax

1

E∗ = − 1

2hcontact
. (15)

For sharp indentation equations equivalent to expres-
sions (14) and (15) are:

∂ E∗
sharp

∂ F ′
F ′

E∗ = 1 − 0.75
Fmax

F ′hcontact

= 1 − 0.375
√

24.5π
Hsharp

E∗ , (16)

∂ E∗
sharp

∂hmax

1

E∗ = − 1

hcontact
. (17)

Taking the derivative of Equation 7 with respect to Fmax
and using Equation 13 for spherical indentation, it can
be shown that

(
∂ E∗

spherical

∂ F ′
F ′

Fmax
+ ∂ E∗

∂ Fmax

)
Fmax

E∗ = 1 (18)

Using Equations 8 and 16, the equality 18 can be proven
valid for a sharp indenter as well (with E∗

sphericalreplaced
byE∗

sharp).
Finally, the overall sensitivity of the elastic modulus

with respect to the measurement errors can be written
using sensitivity coefficients KEh and KEF as

�E∗

E∗ = −KEh

(
�h

h

)
+ KEF

(
�F

F

)
. (19)

The sensitivity coefficients are equal to the expressions
in brackets from Equation 11. They can be explicitly
calculated using Equations 14, 15, 18 and 16, 17, 18 for
spherical and sharp indenters, respectively. The value of
the coefficient KEh is 1.5 for spherical and 2 for sharp
indentation, respectively. The coefficient KEF has the
value of 1 for both indenter shapes.

4. Error sensitivity of hardness measurement
The error sensitivity for hardness can be estimated us-
ing a similar approach. Hardness is calculated for the
spherical and sharp indentation as

Hspherical = 1

2π R

Fmax(
hmax − 0.75 Fmax

F ′
) (20)

and

Hsharp = 1

24.5

Fmax(
hmax − 0.75 Fmax

F ′
)2 , (21)

respectively.
For hardness, an expression similar to Equation 12

for elastic modulus can be written as

�H

E
=

[(
∂ H

∂hmax
− ∂ H

∂ F ′
F ′

hmax

)
hmax

H

](
�h

h

)

+
[(

∂ H

∂ F ′
F ′

Fmax
+ ∂ H

∂ Fmax

)
Fmax

H

](
�F

F

)
.

(22)

The derivatives with respect to hmax and F ′ can be ex-
pressed for spherical indentation as

∂ Hspherical

∂hmax

1

Hspherical
= − 1

hcontact
,

and

∂ Hspherical

∂ F ′
F ′

Hspherical
= −0.75Fmax

F ′hcontact
. (23)
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Similarly for sharp indentation, the derivations with re-
spect to F ′ and hmax yield

∂ Hsharp

∂hmax

1

Hsharp
= − 2

hcontact
,

and

∂ Hsharp

∂ F ′
F ′

Hsharp
= − 1.5Fmax

F ′hcontact
. (24)

The following expression is valid for both spherical and
sharp indentation:

(
∂ H

∂ F ′
F ′

Fmax
+ ∂ H

∂ Fmax

)
Fmax

H
= 1. (25)

The overall sensitivity of the evaluation of hardness is
now:

�H

H
= −KHh

(
�h

h

)
+ KHF

(
�F

F

)
(26)

The value of the coefficient KHh is 1 for spherical and
2 for sharp indenters. The coefficient KHF has a value
of 1 for both indenter shapes.

It can be easily shown that the expressions for sharp
indentation derived here for the specific area function
(A = 24.5h2) apply to any self-similar indenter for
which A ∝ h2.

5. Error sensitivity in systems with finite
frame compliance

In the majority of depth-sensing systems, the displace-
ment sensor is placed serially with other mechanical
elements having compliances comparable to the con-
tact compliance of the indenter-material contact. The
net displacement h of the indentation contact is then ob-
tained by subtracting an additional displacement caused
by the frame compliance Cf from the total measured
displacement hmeas:

h = hmeas − Cf F and hmax = hmeas
max − Cf Fmax.

(27)

The accuracy of the depth measurement depends on the
calibration of two variables—measured depth hmeas and
the frame compliance Cf. In this configuration, hmeas

rather than h displays a constant relative error over the
entire measurement range (�hmeas/hmeas). The elastic
modulus is now expressed as the function of three vari-
ables hmeas, F and Cf:

E∗ = E∗(hmeas, F, Cf)

= E∗[hmax(hmeas, Cf), F ′(hmeas, F, Cf), Fmax(F)]

(28)

An equivalent of Equation 12 can be written as

�E

E∗ =
(

∂ E

∂hmax

∂hmax

∂hmeas

hmeas

E∗ + ∂ E

∂ F ′
∂ F ′

∂hmeas

hmeas

E∗

)

×
(

�hmeas

hmeas

)
+

(
∂ E∗

∂hmax

∂hmax

∂Cf

Cf

E∗ + ∂ E∗

∂ F ′
∂ F ′

∂Cf

Cf

E∗

)

×
(

�Cf

Cf

)
+

(
∂ E∗

∂ Fmax

∂ Fmax

∂ F

Fmax

E∗ + ∂ E∗

∂ F ′
∂ F ′

∂ F

Fmax

E∗

)

×
(

�F

F

)
. (29)

In the case of hardness the error sensitivity is expressed
as

�H

H
=

(
∂ H

∂hmax

∂hmax

∂hmeas

hmeas
max

H
+ ∂ H

∂ F ′
∂ F ′

∂hmeas

hmeas
max

H

)

×
(

�hmeas

hmeas

)
+

(
∂ H

∂hmax

∂hmax

∂Cf

Cf

H
+ ∂ H

∂ F ′
∂ F ′

∂Cf

Cf

H

)

×
(

�Cf

Cf

)
+

(
∂ H

∂ Fmax

∂ Fmax

∂ F

Fmax

H
+ ∂ H

∂ F ′
∂ F ′

∂ F

Fmax

H

)

×
(

�F

F

)
. (30)

Using Equations 27 and considering that

F ′ = lim
F→−Fmax−

hmeas→hmeas
max −

(
Fmax − F(

hmeas
max − Cf Fmax

) − (hmeas − Cf F)

)
,

the following derivatives can be calculated:

∂hmax

∂hmeas
= 1,

∂hmax

∂Cf
= −Fmax,

∂ F ′

∂Cf
= (F ′)2,

∂ F ′

∂ F
= F ′

Fmax
(1 + Cf F

′),

∂ F ′

∂hmeas
= − F ′

hmeas
(1 + Cf F

′) (31)

Based on Equations 30–31 and expressions (13)–(17),
the error sensitivity for the elastic modulus derived from
the spherical and sharp indentation is expressed as

�E∗

E∗ = KEh

(
�hmeas

hmeas

)
+ KEF

(
�F

F

)
+ KECf

(
�Cf

Cf

)

(32)

with the sensitivity coefficients calculated as

KEh = −α
hmeas

max

hcontact
−

(
1 − α

0.75Fmax

F ′hcontact

)(
1 + Cf F

′
)

,

KEF = 1 + α
0.75FmaxCf

hcontact
+ Cf F

′,
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and

KECf = α
FmaxCf

hcontact
+

(
1 − α

0.75Fmax

F ′hcontact

)
F ′Cf,

where α is 0.5 and 1 for spherical and sharp indenters,
respectively.

Using the Equations 30–31 and expressions (23)–
(24), the error sensitivity of hardness derived from the
spherical and sharp indentation is

�H

H
= KHh

(
�hmeas

hmeas

)
+ KHF

(
�F

F

)
+ KHCf

(
�Cf

Cf

)

(33)

with

KHh = α

[
−2

hmeas
max

hcontact
+ 1.5Fmax

F ′hcontact

(
1 + Cf F

′
)]

,

KHF = 1 + α
1.5FmaxCf

hcontact
,

and

KHCf = α
FmaxCf

2hcontact
.
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Figure 2 Relative errors of the reduced elastic modulus (a) and hardness (b) as the function of the relative error in contact depth for spherical
indentation of Aluminum alloy 6061 on a tester with zero frame compliance (R = 0.39 mm, Fmax = 21.4 N, hmax = 10 µm).

The coefficent α in Equation 33 has again value of
0.5 and 1 for spherical and sharp indentation, re-
spectively. The expressions (32), (33) reduce to the
Equations 19 and 26 for the Cf → 0 (i.e., hmeas → h
and (�hmeasured/hmeasured) → (�h/h)).

6. Verification and examples
In the following section, the derived expressions will
be verified by comparing error predictions with actual
variations in measured variables for several specific ex-
amples of indentation measurements. The comparison
will be made for an ideally rigid frame as well as for a
frame with a finite frame compliance.

7. Ideally rigid frame
Fig. 2 shows the variation of the elastic modulus and
hardness for sharp indentation as a function of the error
in the measured depth h in the range ±15%. To render
such comparison, the displacement of the original load-
displacement record obtained with a spherical indenter
(aluminum alloy 6061, indenter R = 0.39 mm, hmax =
10 µm, Fmax = 21.4 µm) was multiplied by a set of
appropriate constants and analyzed. The true variation
is plotted as the set of points; while the predictions
calculated from Equations 19 and 26 are plotted as solid
lines (KEh = 1.5, KHh = 1, KEF = KHF = 1).
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Figure 3 Relative errors of the reduced elastic modulus (a) and hardness (b) as a function of the relative error in contact depth for sharp indentation
of Aluminum alloy 6061 on a tester with zero frame compliance (Berkovich indenter, Fmax = 3 N, hmax = 10.45 µm).

Fig. 3 shows a similar comparison for sharp in-
dentation. The prediction of the error in the param-
eters E∗ and H for sharp indentation is based again
on Equations 19 and 26 with sensitivity coefficients
KEh = KHh = 2 and KEF = KHF = 1. Both for hard-
ness and elastic modulus, the difference between the
predicted and the actual variation is larger than in the
case of the spherical indentation.

8. Finite frame compliance
Table I lists parameters of indentation records for two
aluminum alloys obtained with sharp and spherical in-

T ABL E I Testing parameters, results and error sensitivity coefficients for aluminum alloys 6061 and 7075 tested with spherical and sharp indenters
on a tester with a compliance 0.5 µm/N (E∗

6061 = 72 GPa, E∗
7075 = 74 GPa)

Output Elastic modulus Hardness error
parameters error sensitivity sensitivity

Material Fmax hmax (µm) F ′ (µm/N) hcontact (µm) F ′Cf E∗ (GPa) H (GPa) KEh KECf KEF KHh KHCf KHF

Spherical indentation indenter R = 0.39 mm (EWC-Co = 618 Gpa)
Al 6061 21.4 N 10 13.6 8.8 6.73 81 0.99 −8.38 6.68 8.18 −1.3 0.3 1.9
Al 7075 15.1 N 5.5 9.06 4.24 4.53 78 1.44 −6.25 4.75 6.2 −1.45 0.45 2.34

Sharp indentation Berkovich indenter (EDiamond = 1141 Gpa)
Al 6061 3 N 10.45 4.72 9.98 2.48 89 1.18 −4.4 2.4 3.47 −2.08 0.08 1.22
Al 7075 9.7 N 15 6.8 9.98 3.4 88 2.08 −5.5 3.5 4.68 −2.18 0.18 1.53

denters. The original data were collected on a Nanotest
600 (Micromaterials, Wrexham, UK) with the nomi-
nal frame compliance of 0.5 µm/N. Calculated hard-
ness, elastic modulus and corresponding error sensi-
tivity coefficients are also listed in Table I. It can be
seen that the sensitivity coefficients are significantly
larger here compared to the case of the rigid frame
(Cf = 0) discussed in the previous paragraph. Error
sensitivity coefficients for hardness (KHh, KHF, KHCf)
are smaller than the coefficients for elastic modulus
((KEh, KEF, KECf), which was not the case for the
zero frame compliance. The frame-compliance sensi-
tivity coefficients KECf and KHCf are lower than the
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Figure 4 Relative errors of the reduced elastic modulus and hardness as a function of the relative error in contact depth for sharp indentation of
Aluminum alloy 6061 on a tester with frame compliance Cf = 0.5 µm/N (Berkovich indenter, Fmax = 3 N, hmax = 10.45 µm).
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Figure 5 Relative errors of the reduced elastic modulus and hardness as a function of the relative error in applied force for sharp indentation of
Aluminum alloy 6061 on a tester with frame compliance Cf = 0.5 µm/N (Berkovich indenter, Fmax = 3 N, hmax = 10.45 µm).

coefficients KEh, KEF, KHh, KHF related to the mea-
surement of penetration depth and force. In particular,
for hardness, the method appears to be relatively in-
sensitive to the accuracy of the calibration of the frame
compliance.

Figs 4, 5, and 6 compare estimated and true errors
with respect to calibration errors of all three inputs—h,
F and Cf. The curve for aluminum alloy 6061 loaded
with a Berkovich indenter to the maximum load of 3 N
presented in Fig. 1 was used as a reference data set.
There is a clear difference in the input error sensitivity
of elastic modulus and hardness. The hardness variation
resulting from the same change of a given input param-
eter is much smaller compared to the variation in the
elastic modulus and follows a nearly linear trend with
respect to a change in all three parameters hmeas, F, and
Cf. The variation of elastic modulus is not only larger,
but also shows a nonlinearity with respect to errors in
all input parameters.

Fig. 7a shows the sensitivity coefficients KEF, KECf
normalized with respect to KEh plotted as the func-
tion of F ′Cf. F ′Cf represents the ratio of the machine

compliance and the contact sample compliance (i.e.,
Cf/Csample) Fig. 7b presents a similar plot for the coef-
ficients KHF, KHCf normalized with respect to KHh. The
plots in Fig. 7 are again based on the load-displacement
data from the sharp indentation of the aluminum alloy
6061 presented in Fig. 1. The frame compliance was
varied from 0 to 0.7 µm/N. Both charts of Fig. 7 illus-
trate how the analysis becomes more sensitive to force
measurement with increasing F ′Cf.

At this point one could conclude and rewrite the
Equations 32, 33 into the form of an expression relat-
ing the standard deviation of the calculated parameters
to the standard deviations in the calibration of the total
depth, force and frame compliance. Such an expression
would have the following form for the elastic modulus
[12]:

σ (E∗)

E∗ =
[(

KEh
σ (hmeas)

hmeas

)2

+
(

KECf

σ (Cf)

Cf

)2

+
(

KEF
σ (F)

F

)2]0.5

(34)
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Figure 6 Relative errors of the reduced elastic modulus and hardness as a function of the relative error in frame compliance for sharp indentation of
Aluminum alloy 6061 on a tester with nominal frame compliance Cf = 0.5 µm/N (Berkovich indenter, Fmax = 3 N, hmax = 10.45 µm).
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Figure 7 (a) Error sensitivity ratios KEh, KECf normalized with respect to KEh and (b) error sensitivity ratios KHh, KHCf normalized with respect to
KHh. F ′Cf represents the relative ratio of the frame compliance to the contact sample compliance (Berkovich indentation of aluminum alloy 7075,
Fmax = 9.7 N, hmax = 15 µm).
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The expression (34) is based on the assumption of the
independent calibration of all three variables. The in-
dependence of the calibration of the contact depth and
force is satisfied in the majority of the depth sensing
systems, but the calibration of the compliance is usu-
ally based on previously conducted depth and force cal-
ibrations. Thus, a calibration overestimating the force
measurement will lead to smaller value of the frame
compliance, which will in return reduce the overall er-
ror, since the error sensitivities have opposite signs. The
right side of the Equation 34 should contain negative
covariation coefficients that are not explicitly known
and depend on the approach used in the compliance
calculation. Expression (34) therefore represents a con-
servative estimate of the measurement error. The actual
average error in the measurement of the elastic modu-
lus will be smaller as a consequence of the covariance
between the compliance calibration and the depth/force
calibrations.

9. Other sources of systematic error
This study has focused on errors introduced into the
measurement as the result of systematic measurement
calibration errors. Other significant errors introduced
into the measurement of mechanical properties by in-
dentation are errors originating from the pile-up of
the material around the indenter. Several studies have
been performed to numerically predict or experimen-
tally measure the pile-up effects for both the spherical
and sharp (Berkovich or conical indenter) indentation
[13–16]. In addition to pile-up, roughness and tilt of
sample surface may represent problems for an indus-
trial application of the indentation technique. Tilt and
surface undulations of the sample surface can cause
variations in the pressure distribution and additional
lateral forces to the indenter. This is especially critical
in the initial stage of the contact for the spherical inden-
ter, where the uncompensated lateral force may lead to
a lateral sliding of the indenter.

10. Summary
This study presented analytical expressions relating
the error in the calculated elastic modulus and in-
dentation hardness, evaluated by the Oliver and Pharr
method, to the systematic errors in the measured depth,
force and frame compliance. Systems with ideally
stiff frames and finite-stiffness frames were discussed.
Equations 19, 26 and 32, 33 express systematic out-
put errors as function of input errors for zero and finite
frame compliance, respectively. The expressions were
derived based on a first order Taylor expansion and es-

timate errors accurately in the vicinity of the nominal
values of the measured variable. Within range of ±10%
of input error, the estimated and actual errors were in a
good agreement for all load-displacement records con-
sidered. The prediction agreed with the true variation
in a wider range of hardness compared to elastic mod-
ulus. Since the second derivatives of error curves for
both hardness and elastic modulus are positive, the lin-
ear expressions presented underestimate positive errors
and overestimate negative output errors.
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